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Why Photons are Interesting

Initial heavy ions, made up of primary partons
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Why Photons are Interesting

Fly at each other



Fly at each other



And collide, producing a QGP of secondaries
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Secondaries rescatter, mostly thermalizing
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Secondaries rescatter, mostly thermalizing
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and eventually hadronize, continue to re-scatter,



and the hadrons escape



Interesting part: the behavior of secondaries making up the

QGP

Problem: rescattering destroys much of primary information

But photons are produced at each stage

And almost all photons escape unscathed.
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Prom Pt photons from collisions of primary partons
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Thermal (and Athermal) photons from collisions between
secondaries of the QGP
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More thermal photons from hadronic collisions, and
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Decay photons: decays in flight of 7° and n
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L og(Number)

Cartoon of yields of each process

Hadronic

QGP

L og(Energy)

Prompt
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Prompt: power law hard
tail

QGP: thermal (exp. tail)

plus small powerlaw tail

Hadronic: like QGP but
softer



L og(Number)

The bad news is

L og(Energy)
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Probably more Decay pho-
tons than Direct photons at

every energy!

Why? direct photons have

no gy suppression



Seeing the prompt photons

Prompt photon yield should be calculable

e Perturbative calculation

Not easy: relatively small x, scale dependence

e Measurement in pp collisions

May be visible above the backgrounds!
e Main background: 7" decays
o 7 rate is measurable (with errors)

e 7 production is suppressed (Jet Quenching)
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Direct photons: Already observed?
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Phenix observation can be interpreted as seeing photon

excess in central collisions at high pr.

At pr ~ 5 GeV, probably “direct” photons.

21



Direct photons: Already observed!

E.(GeV)

QM2004 data, most central bin
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Thermal Photons: an Interesting Theoretical

Problem

e Approximate/Assume QGP to be in equilibrium
e Compute dN,,(k,T)/d’kd*z by Thermal Field Theory

e Insert into hydrodynamic evolution of the QGP

B Leading order diagrams.

Parametrically O(asagnm).

AVAVAVAV)
Logarithmically enhanced.
+ W Problem believed solved in
— JYVv 1989
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That treatment is incomplete!

Aurenche, Gelis, Kobes, Zaraket

,rfy naively O(aZagy)

E and actually O(OCSOCEM)

Bremsstrahlung, inelastic annihilation: collinear

enhancements

Thermal QFT diagrams, summing all lines but ~:

=) =D
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Treatment STILL incomplete!

Loop diagrams like

corresponding to the interference between diagrams,

o
1§

are also asagy! (Double collinear enhancement)
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Physical reason
Opening angle ~ g7 /F < 1, and vguark =~ C.

Wave packet transverse size ~ 1/g.T.

Outgoing quark
Approaching quark

HH

| -
wide transverse
wave packet Scattering

Site

Wave packets overlap over
along distance (Formation length)
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Second scattering while wave packets still overlap:

Approaching quark

HH

Emissions from scatterings overlap and interfere in

amplitude.
For E~ T, 7 ' ~ g7T, and scattering width I" ~ ¢ZT"

Some—incomplete—interference expected. LPM effect!
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Diagrammatic Analysis

Lengthy power counting analysis (amold, Gm, vare)

One must include

diagrams of form

corresponding roughly to

B [ EEE
But no other diagrams needed
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Resummation of Diagrams

Diagrams may be resummed by defining a dressed vertex,

> >

determined by an integral equation (second line).
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Emission rate from thermal QGP (3 light flavors) is amy

dN,  20pu > dp [ d®py ng(k+p) [1-ns(p)
Bkdia Am2k J-oo 21 J (2m)2 2[p (p+k)]?

x |p* + (p+k)’| Re {2p, - f(pL;p. k)] (1)

X

2T d?q, mA T
2, = WE f£(pi;p k) + gl [ D
Pl [ (pJ_apa )—I_ 3 9s (27_‘_)2 Qi(mZD_FQi) X
x | £(p1;p, k) — f(a+piip, k)], (2)
2 2
pJ__|_mOO k
OoF = 3
2 p(k+p) 3

Note, (2) is implicit and must be solved numerically.
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Result

Photon production rate
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Brem /pair type and 2 < 2 production rates are comparable.
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Folding into a hydro code:

Hydro model dependence > rate uncertainty!
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Ruuskanen et. al.
Thermal v ~ v(x)/10.

Challenging but not im-

possible experimentally



Jet quenching

A few hard partons are produced when the primaries collide.

They must escape through the QGP.

Lose energy on the way, mostly =

to gluon brem. - =,
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Jet quenching, v production similar: brem, LPM...

Emission rate, per dk of gluon energy and dt of time:

dl(p,k)  Csgz 1 1 y
dkdt — 16mp’ 1+ e /T 1+ e~(0=k)/T
([ 1+(1—x)? )

23(1—1)2 q9 — 49

(p: parton energy; © = k/p; h: measure of non-collinearity)
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Here F is given by

oh = iSE(h,p, k)F(h) + 2/?;?;0(%) X
x{(Cs = Ca/2)[F(h) - F(h—kqy)

h2 m2 m2—k m2

SE(h,p k) = k p=r _ _P

(h,p, k) Zpk(p—k)—l_ 2% 2(p—k)  2p
m3 2 _ g3T?



Jet quenching has been observed!
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STAR data: charged yield (scaled to pp), AA vs. DA.
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A calculation of v production and jet quenching using the
same formalism and hydro model should inter-relate them.

There are also v produced as secondaries off the jets as they

quench (the bremsstrahlung is sometimes a v not a gluon).

Work in progress s. jeon, 6u

preliminary results of v production from hard jets not
promising: v yield 1073 of energetic partons—but see Gale's
talk.
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Conclusions

Direct +'s are intrinsically interesting

Decay ~'s should outnumber direct v's, making

observation of direct v's challenging

Computing v production from QGP is
due to LPM, but is nevertheless broadly

uncertainties in QGP ~ dominated by Hydro, not QFT

Connection between ~ production and jet quenching
deserves more attention, and may help constrain hydro

(and other) uncertainties.
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